http://b.niaojidi.com

什么是黑洞(关于黑洞的详细介绍)

什么是黑洞?

黑洞简洁明了地说就是自身半径小于史瓦西半径的天体,但这个概念不一定限于天体(恒星,中子星)等,这个概念适用于所有物质,从理论上来看任何存在的物质的只要自身半径小于史瓦西半径都会变成黑洞.要小于这个半径就必须自身塌缩.根据计算可以得出地球的史瓦西半径是9毫米,假如地球要变成一个黑洞那么第九就要收缩到半径小于9毫米.而实际上地球不可能变成黑洞,太阳也不可能,因为地球和太阳的质量太小了,要变成黑洞的首要条件就是自身质量大于3倍太阳(3个太阳质量)(1).大于这个质量的恒星死亡后留下的星核会因为内部热应力无法抵抗自身引力而发生引力坍塌(2),而变成一个黑洞.但也有其他一些计算结果表明可能还会变成介于中子星和黑洞之间的其他一类天体(3).

(1):这个质量叫做"奥本海默极限",理论上如果大质量恒星爆发后留下的星核(中子星)如果有一部分物质加入,那么就会使得该星核质量超过奥本海默极限,从而使其星核发生灾难性的引力坍塌最终变成黑洞.

(2):引力坍塌,就是冷星核内部的热应力无法抵抗自身重力所造成的星体猛烈向中心坍缩的现象,这个过程的必要条件是该星核的质量必须超过奥本海默极限.恒星爆发后留下一个由铁等无法发生核聚变反应的稳定物质组成的一个星核,这个星核根据该恒星的质量可以有2种归宿,1是该恒星质量小于2.5倍太阳质量,那么该恒星死亡后会变成一个白矮星.2是该恒星质量大于2.5倍太阳质量,这样该恒星死亡留下了更多的物质,使得残留的星核质量进一步变大而变成中子星.

(3):这类天体是理论计算的一个结果,这种天体叫"夸克星",密度比中子星更大,根据理论计算如果中子星上加入适当质量的物质,那么就会使得该中子星的重力场进一步变大,这样可能会使得组成中子的崩溃而分离出组成其的物质"夸克"也叫"奇夸克".但有一点值得注意,夸克星的质量并不超过奥本海默极限,因此如果没有物质再加入的话那么自身的力学结构就会稳定下来,变成一个夸克星.但如果仍然有物质继续加入的话那么就会使质量超过奥本海默极限,最终变成黑洞.黑洞至今还是个迷,它的密度极其的高,甚至连光线都会被它吸走。

一些星球爆炸后会形成黑洞黑洞至今还是个迷,它的密度极其的高,甚至连光线都会被它吸走。

一些星球爆炸后会形成黑洞黑洞的性质不能用常理的观念思考,但是它的原理中学生都能接受。黑洞形成的必要条件就是:一个巨大的物体,集申在一个极小的范围。晚期的恒星恰巧具备了这样的条件。当恒星能量衰竭时,高温的火焰不能抵消自身的重力,逐渐向内聚合,原子收缩──牛顿法则起作用了:恒星进入白矮星阶段,体积变小,亮度惊人。白矮星进一步内聚,最后突变城一个点,整个过程不到1秒。在我们看来恒星消失了,一个黑洞诞生了。一个像太阳这样大的恒星自身引力如此之大,可能最终收缩成一个高尔夫球,甚至〝什么都没有〞。由于无限大的密度,崩坍了星体具有不可思议的引力,附近的物质可能被吸进去,甚至光线都不能逃脱──这是看不见它的原因。这个深不可测的洞,就被称为〝黑洞〞。科学家相信大多数星系的中心都有黑洞,包括我们身在其中的银河系。根据相对论,90%的宇宙都消失在黑洞里。所以一种令人吃惊的说法是:〝无限的黑洞乃是宇宙的本身〞。黑洞里面有什么?只能从理论上推测。假如一位勇敢的人驾驶飞船奔向黑洞,他感觉到的第一件事就是无情的引力。从窗口望出去是周围星光衬托下一个平底锅似的圆盘,走得更近了,远方似乎宽广的〝地平线〞发出X光,包围着深不可测的黑洞。光线在附近扭曲,形成一个光环。这时宇宙员要返航已来不及了,双脚引着他向黑洞中心飞去,头和脚之间巨大的引力差使他如同坐在刑具台上,远在〝地平线〞以外3000英里,引力就把他撕碎了。类星体是宇宙中最遥远、最明亮的天体,有的类星体释放出的能量超过1000个普通星系所释放能量的总和。对于类星体的本质,天文学家曾有过许多设想。目前比较流行的解释是,类星体是剧烈活动的星系核心,在那里存在着质量可能超过10亿颗恒星的超巨型中央黑洞,正在吞食周围的气体尘云。但这个解释存在一定问题,类星体是非常遥远亦即非常古老的天体,有的类星体在百亿光年以外,它们的年龄必定超过一百亿年,否则其光芒便不可能到达地球。这意味着,一些类星体在宇宙大爆炸之后不到几十亿甚至十亿年就诞生了,这么短的时间不足以使星系和超巨型黑洞在原初气体尘云中诞生。法国和阿根廷天文学家宣布,他们利用“哈勃”太空望远镜在银河系内观测到一个“逃跑”中的黑洞,为黑洞形成与超新星爆发之间的相关性提供了新的有力证据。这个黑洞代号为“GRO J1655-40”,它似乎没有闲庭信步的情绪,而是像出膛的炮弹一样在飞奔,时速达到40万公里,相当于邻近恒星运动速度的5倍。一些科学家利用暗物质来解决这个问题,他们认为星系不仅包含我们能观察到的物质,还包括大量无法看到的物质。目前人们尚不清楚暗物质究竟是什么,但它的引力作用对于星系的稳定存在很重要。如果类星体及其宿主星系周围存在暗物质晕,就可以解释为什么类星体出现得如此之快。 他们认为,作为超巨型黑洞的类星体吞食周围气体时,会与暗物质晕的边缘相撞,产生激波。撞击使气体迅速加热,气体中不带电的原子分解成为带电离子。类星体发出的光本来有一些会被气体吸收,只不过气体在离子化之后就变得透明了。类星体与暗物质晕撞击导致气体突然变得透明,会在类星体的光谱特征中反映出来。科学家表示,他们分析了两个遥远类星体的光谱之后,发现了理论所预示的这种变化。他们还据此估计出了有关暗物质晕和黑洞的大小。

黑洞其实也是个星球,只不过它的密度极大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样)。对于地球来说,以第二宇宙速度来飞行就可以逃离地球,但是对于黑洞来说,它的第二宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。一些科学家认为光的速度比黑洞慢,所以被吸进去,当速度比黑洞快时就可以穿过黑洞边缘。当然光速已经是极限速度了。黑洞是一种非常神秘的天体。它的体积很小,但密度却大得惊人,每立方厘米就有几百亿吨甚至更高。由于它的密度大,所以引力也特别强大。不管什么东西,只要被它吸进去,就别想“爬”出来,连跑得最快的光也逃脱不掉黑洞的巨大引力。

由于黑洞本身不发光,所以用任何强大的望远镜都看不见黑洞。尽管如此,大多数科学家仍相信,宇宙中有着许许多多黑洞。当大质量的恒星演化到晚年,经过超新星爆发,就有可能坍缩成黑洞。在宇宙早期,也会形成一些小黑洞。小黑洞的体积只有原子核那么大,质量和一座山差不多,达到上亿吨,里面蕴藏的能量相当于10个大型的发电站。

黑洞就像一个谜,没有人能看见它。但黑洞强大的吸引力会影响它附近的天体,这些天体在被黑洞吸引、吞没的过程中,会发射出X射线或γ射线,而一旦落入黑洞,便无影无踪。科学家就是通过观测这些射线,发现了黑洞的蛛丝马迹。例如,天鹅座X—1的伴星可能就是一个黑洞。还有科学家认为,银河系的中心也存在一个巨大的黑洞。

就是黑色的洞洞,没什么作用。黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。 让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬.霍金于1974年做此预言时,整个科学界为之震动。

霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量(参考霍金的《时间简史》,我们可以认定一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失)。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。大质量恒星在“生命”演化到尽头时所要面对的终极命运:一颗大质量恒星在持续“燃烧”数百万年后耗尽燃料,无法继续与自身引力相抗衡,不可避免地踏上毁灭性的坍缩之路。像太阳这样的中等质量恒星,坍缩到一定程度便会稳定下来,成为体积更小的白矮星;但如果一颗恒星的质量足够大,它的引力就会压倒一切企图阻止坍缩的力量——这颗直径数百万千米的恒星会一直坍缩,最终比字母“i”上那个小点还要小。

大多数物理学家和天文学家认为,这样的坍缩最终会形成黑洞—— 一种引力超强的天体,没有任何东西能从它的周边区域中逃脱。一个黑洞由两部分组成:核心处是一个奇点(singularity),那颗恒星上的所有物质都被压缩在这个无穷小的点中;围绕在奇点周围的则是一个不可能从中逃脱的空间区域,它的边界被称为“事件视界”(event horizon)。任何东西一旦落入事件视界,就失去了逃出生天的所有希望,它们发出的任何光线都被囚禁在视界之中,因此外界观测者永远不可能再看到它们。这些东西最终也都会被挤入奇点。

简单的说 黑洞就是能吸收他周围一些东西的洞啊(光和时间的能被吸去的 很恐怖的)没有光吸收周围的光黑洞就是能吸收他周围一些东西的洞啊因为看不到所以叫黑,因为任何东西包括光碰到它就被吸收进去,掉进去了所以形象的叫洞,总称黑洞。其实黑洞就是一个星球,只不过它的密度高,引力强,就是以光的速度都无法冲破它的引力逃逸出来,也就看不到它了“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。 根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。 等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。 那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。 我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。 这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

黑洞是一个内部有强大磁场的物质质量极大,体积极小的天体.只是一个天体,虽然体积小,但质量特大,且内部有强大磁场。黑洞每时每刻都在吞噬着物质就是传说中的禁地。(很少有人见过)

黑洞

什么是黑洞?

了了解什么是黑洞,让我们先从太阳这样的恒星谈起。我们知道,太阳的直径为1,392,000公里,它的质量为地质质量的330,000倍。在这样大的质量、从表面到中心的距离这样长的情况下,位于太阳表面的任何东西所受到的引力大约相当于地球表面引力的28倍。

任何一颗普通的恒星都会由于下述两种因素的相互平衡而保持其通常的大小。其中一个因素是恒星中心有非常高的温度,因而会使恒星的物质经常处于膨胀的状态。另一个因素就是它本身具有很大的引力,从而会使恒星的物质倾向于收缩而挤压在一起。

但是在恒星生存期的某一阶段,其内部温度将会降低,这样一来,引力将会成为一个主导的因素,结果,这颗恒星就会开始坍缩,在这个过程中,恒星内部物质的原子结构会遭到破坏。这样一来,原子将不复存在,替代它的将是一个个电子、质子和中子。这颗恒星将会坍缩到这样一种程度,这时电子的相互排斥力将使该恒星不能够再进一步坍缩。

这颗恒星于是就成为一颗“白矮星”。像太阳这样的恒星一旦坍缩成为一颗白矮星,它的全部物质将被挤压成为一个直径只有大约16,000公里的球体,它的表面引力将变成地球表面引力的210,000倍(因为它的质量虽然没有变,但是从表面到中心的距离则大大缩短了)。

在某些条件下,引力将变得如此之大,甚至能战胜电子之间的排斥力。结果,这颗恒星将会再度坍缩,并迫使其全部电子和质子彼此结合为中子,这样一来,这颗恒星将一直收缩到所有的中子都彼此接触为止。到了这一步,这个中子结构物又将会抵制进一步的坍缩,这颗星于是成为一颗中子星。这样的中子星将把太阳的全部质量压缩在一个直径只有16公里的球体内。结果,它的表面引力将是地球引力的210,000,000,000倍。

在某些条件下,引力甚至能进一步战胜中子结构的抗拒。这时候,再也没有任何东西能够抵抗得住它的进一步坍缩了。结果,这颗恒星就会坍缩到体积等于零,而它的表面引力就会无限地增大。

根据相对论,一颗恒星所发射出来的光,当它克服该恒星的引力场而向外射出的时候,将会失去一定的能量。引力场越大,所失去的能量也越大。这一点已经由科学工作者经过天文观测和实验室实验得到证实。

由太阳这样的普通恒星发射出的光,它失去的能量是很有限的。由白矮星发射出的光会失去较多的能量;由中子星发射出的光会失去比这更多的能量。当这颗中子星进一步坍缩时,就会出现这样一种情况:从它的表面向外射出的光将会失去它的全部能量,从而根本不可能逃逸出去。

一个比中子星坍缩得更厉害的天体,它的引力场将是如此之强,以致任何靠近它的东西都将被它所捕获,并且再也不能从它里面逃逸出去。这就如同被捕获的物体落进一个无底洞的情况一样。而且,正如上面所说,甚至连光也不能逃逸出去,因此,这个坍缩了的天体将是黑的。正因为它既像个无底洞,而且又是黑的,所以天文学家就把它叫做“黑洞”。

天文学家目前正在宇宙的各个角落寻找可证明确有这种黑洞存在的证据天体的密度极其大,以至于其第一宇宙速度大于光速,使光线也不能逃脱其束缚,这一类天体就是黑洞黑洞一般是质量大于太阳质量的恒星晚期坍缩形成的天体。根据理论物理,黑洞可以俘获进入黑洞半径以内的任何物质,如光子、中微子等,由于黑洞有极大的吸引力,因此直接无法获得黑洞的任何信息,只能通过间接的观测来确定他的存在。目前天文学家已经发现了许多类似于黑洞的天体,不过很多人确信他们就是黑洞。根据爱因斯坦场方程的稳态解,最普通的稳态黑洞是克尔纽曼黑洞,具有质量M,电荷Q,单位质量自转角动量a.但是根据霍金的证明,黑洞质量进行蒸发,黑洞质量会慢慢减少。巨大的恒星“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

黑洞是天文名称。黑洞广义相对论预言的一种特别致密的暗天体。大质量恒星在其演化末期发生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子在内的任何物质只能进去而无法逃脱。形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量。除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可能存在于星系中央。(参考:《宇宙新视野》)

黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。虽然这么说,但黑洞还是有它的边界,即"事件视界(视界)".据猜测,黑洞是死亡恒星的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的.(有关参考:《时间简史》——霍金 著)

■物理学观点的解释黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离。对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第二宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。一些科学家认为光的速度比黑洞慢,所以被吸进去,当速度比黑洞快时就可以穿过黑洞边缘。普通高中课程标准实验教科书 物理2

42页 左下角

呵呵,那里很详细捏~!

郑重声明:为了让新农科技网信息更丰富,我们修改了原文排版和分段,如有冒犯你的利益,请第一时间联系我们修改或删除,感谢!

新农看点
版权与免责声明:
①凡本站注明"来源:新农科技"的所有作品,均由本站编辑搜集整理,并加入大量个人点评、观点、配图等内容,版权均属于新农科技,未经本站许可,禁止转载,违反者本站将追究相关法律责任。
②本站转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本站赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本站转载时,必须保留本站注明的作品来源,并自负版权等法律责任。
③如涉及作品内容、版权等问题,请在作品发表之日起一周内与本站联系,我们将在您联系我们之后24小时内予以删除,否则视为放弃相关权利。